839 research outputs found

    Helfrich-Canham bending energy as a constrained non-linear sigma model

    Full text link
    The Helfrich-Canham bending energy is identified with a non-linear sigma model for a unit vector. The identification, however, is dependent on one additional constraint: that the unit vector be constrained to lie orthogonal to the surface. The presence of this constraint adds a source to the divergence of the stress tensor for this vector so that it is not conserved. The stress tensor which is conserved is identified and its conservation shown to reproduce the correct shape equation.Comment: 5 page

    Fission of a multiphase membrane tube

    Get PDF
    A common mechanism for intracellular transport is the use of controlled deformations of the membrane to create spherical or tubular buds. While the basic physical properties of homogeneous membranes are relatively well-known, the effects of inhomogeneities within membranes are very much an active field of study. Membrane domains enriched in certain lipids in particular are attracting much attention, and in this Letter we investigate the effect of such domains on the shape and fate of membrane tubes. Recent experiments have demonstrated that forced lipid phase separation can trigger tube fission, and we demonstrate how this can be understood purely from the difference in elastic constants between the domains. Moreover, the proposed model predicts timescales for fission that agree well with experimental findings

    Investigation of a Mesoporous Silicon Based Ferromagnetic Nanocomposite

    Get PDF
    A semiconductor/metal nanocomposite is composed of a porosified silicon wafer and embedded ferromagnetic nanostructures. The obtained hybrid system possesses the electronic properties of silicon together with the magnetic properties of the incorporated ferromagnetic metal. On the one hand, a transition metal is electrochemically deposited from a metal salt solution into the nanostructured silicon skeleton, on the other hand magnetic particles of a few nanometres in size, fabricated in solution, are incorporated by immersion. The electrochemically deposited nanostructures can be tuned in size, shape and their spatial distribution by the process parameters, and thus specimens with desired ferromagnetic properties can be fabricated. Using magnetite nanoparticles for infiltration into porous silicon is of interest not only because of the magnetic properties of the composite material due to the possible modification of the ferromagnetic/superparamagnetic transition but also because of the biocompatibility of the system caused by the low toxicity of both materials. Thus, it is a promising candidate for biomedical applications as drug delivery or biomedical targeting

    Phase ordering and shape deformation of two-phase membranes

    Full text link
    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres and tori. Using an exact periodic domain wall solution we solve for the shape and phase ordering field, and estimate the degree of deformation of the membrane. The results are pertinent to a preferential phase separation in regions of differing curvature on a variety of vesicles.Comment: 4 pages, submitted to PR

    Porous silicon formation and electropolishing

    Full text link
    Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low and to electropolishing for high applied current. The transition between pore formation and polishing is accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at the interface between the semiconductor and the electrolyte is determined by the local current density. We model the transport of reactants and reaction products and thus the current density in both, the semiconductor and the electrolyte. Basic features of the chemical reaction at the interface are summarized in law of mass action type boundary conditions for the transport equations at the interface. We investigate the linear stability of a planar and flat interface. Upon increasing the current density the stability flips either through a change of the valence of the dissolution reaction or by a nonlinear boundary conditions at the interface.Comment: 18 pages, 8 figure

    Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects

    Full text link
    We analyze the influence of spatial orientation on the optical response of hydrogenated silicon quantum wires. The results are relevant for the interpretation of the optical properties of light emitting porous silicon. We study (111)-oriented wires and compare the present results with those previously obtained within the same theoretical framework for (001)-oriented wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In analogy with the (001)-oriented wires and at variance with crystalline bulk silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0{\bf k}=0 whose value is largely enhanced with respect to that found in bulk silicon because of quantum confinement effects. The imaginary part of the dielectric function, for the external field polarized in the direction of the axis of the wires, shows features that, while being qualitatively similar to those observed for the (001) wires, are not present in the bulk. The main conclusion which emerges from the present study is that, if wires a few nanometers large are present in the porous material, they are optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte

    Effective Area-Elasticity and Tension of Micro-manipulated Membranes

    Full text link
    We evaluate the effective Hamiltonian governing, at the optically resolved scale, the elastic properties of micro-manipulated membranes. We identify floppy, entropic-tense and stretched-tense regimes, representing different behaviors of the effective area-elasticity of the membrane. The corresponding effective tension depends on the microscopic parameters (total area, bending rigidity) and on the optically visible area, which is controlled by the imposed external constraints. We successfully compare our predictions with recent data on micropipette experiments.Comment: To be published in Phys. Rev. Let
    • …
    corecore